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Abstract. We present a method for near infrared and depth data based
plant soil segmentation and two alternative, probabilistic, model based
methods for a subsequent real-time capable crop line identification, re-
spectively tracking. The segmentation and both, the RANSAC based
crop line identification and the cascaded particle filter crop line identifi-
cation and tracking needs neither a learning phase, nor any other form
of a-priori knowledge of the row structure or the observed plants. The
methods are tested with different datasets of real world robotic appli-
cations, result in high detection rates, and show the adaptability of the
particle filter for completely different and also changing row structures.
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1 Introduction

Most autonomous agricultural robot systems solve the localization problem by
utilizing either a high accurate and absolute, but also expensive RTK-GPS based
positioning system or a local machine vision (MV) based system that determines
a relative position. Besides the superior accuracy of the RTK-GPS system, the
most significant disadvantages of such systems are that the negotiable track has
to be defined in prior that they are expensive and that the needed external
infrastructure generates often significant running costs.

In opposite, MV systems do not need any additional infrastructure or exter-
nal information and by using the local available environmental structures they
offer a higher flexibility. Since no external infrastructure is needed, no additional
running costs are generated, what enables cheaper navigation solutions and fa-
cilitates the development of affordable autonomous agricultural machines that
are also suitable for small and medium size agricultural businesses.

In the last decades a number of MV based crop line segmentation and de-
tection algorithms have been developed. Several segmentation methods [1–4]
consider spectral information (green-channel, NIR, RGB) without taking 3D in-
formation into consideration. Otherwise, pure 3D segmentation methods omit
often the spectral information [5, 6].
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Besides [3, 5] the crop line detection or row guidance systems are realized
with single 2D image analyzing methods as the Hough transform [1], linear
regression, stripe analysis, and other methods [7]. All methods need some form
of prior information as the row distance, camera orientation, other algorithm
specific parameters or deal with constraints concerning the line orientation.

Kise et al. [5] propose a stereo vision based row detection system, which uses
a cross-correlation function in combination with an elevation map, to identify a
navigation point and to calculate the desired steering angle.

In [6] Weiss and Biber develop an algorithm to segment plants, soil, and other
structures in 3D point clouds based on the height differences and a RANSAC
[8] ground plane estimation.

Besides the different segmentation methods, most of the algorithms need
prior information or constraints concerning the crop row structure or crop line
orientation and have to be reconfigured to adapt them to seasonal changes or
different row structures. Our approach tries to advance the crop row detection
by replacing the hard constraints with more flexible probabilistic methods that
base on geometric models of the expected row structures. Our aim is to make
specific initial information obsolete, independent from seasonal changes, crop line
orientations, and row distances and to determine the most probable parameter
configuration for the models. hh

2 Approach

The approach can be separated into two parts: The Near Infrared Depth (NIRD)
segmentation which segments the plants, respectively the soil and prepares the
data for the second part, the two alternative subsequent probabilistic crop line
identifications.

2.1 NIRD Plant Soil Segmentation

The NIRD segmentation utilizes the advantages of NIR imaging and improves
the results with the plants’ height information, extracted from 3D data. While
pure height based segmentation tend to fail in early growing states, spectral
information can be utilized as soon as the plants are visible. The NIRD segmen-
tation can be divided into three steps: NIR segmentation, height segmentation,
and data fusion. The realized height segmentation is similar to the method ap-
proached in [6], but adds an additional step that projects the 3D points to the
NIR image. The generated height map and the NIR image are normalized and
fused together by a pixel-wise multiplication. In a next step, the results are vir-
tually projected to the ground plane. The reprojection guarantees that the line
equations are rated and verified with the correct dataset by the subsequent crop
line detection. Hence, it avoids wrong line ratings due to the plant’s not consid-
ered height, and perspective geometry (cf. Fig. 1).
The result of the reprojected data fusion is binarized with an adaptive thresh-
olding method and ends in the final segmentation.
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Fig. 1. Segmented image before (left) and after (right) it is projected to the estimated
ground plane (x-y plane). Red and cyan: Estimated 2D lines which are within the
ground plane (f(x, y)). Red: determined with the not-projected image data. Cyan: de-
termined with the projected image data. If the red line is projected into the real world it
will not represent the correct position of the crop line. The error is caused by the height
of the observed plants and the perspective. Since the cyan line is directly estimated in
the x-y plane it is unbiased (right).

2.2 RANSAC Based Crop Line Detection

In a nutshell, the RANSAC algorithm fits a set of models into a set of points
and finally results in a parametrization for the best fitting model [8]. Within the
context of this work, it is used to search lines within the NIRD image data. Based
on the assumption that the line search and the determination of their parallelism
can be separated, a single line model in normal form is used that parametrizes
a line with the vector r = [r, θ]. Since the 3D and color information of a point
is projected onto the ground plane by the NIRD segmentation, only the points
that belong to a given line within the ground plane in the 3D space, will belong
to a line within the 2D image. Since the 3D information is available for each
pixel a re-projection of the line to the 3D space is possible and the output of the
NIRD segmentation can be used for the crop line detection.

The count of the data points significantly influences the computational costs,
hence the dataset is reduced by a simple thinning method that shrinks areas
in the binarized image to pixel chains (skeletons). In opposite to a center of
mass data reduction method, the shrinking keeps the size and directionality
information of the areas and is also suitable for elongated crop rows that appear
as one connected area within the binarized segmented image.

In a first step a RANSAC line search is performed which bases on [8]. Usually
the RANSAC algorithm finishes with the parametrization that results in the
highest inlier ratio, but instead of rating the lines individually, the parallelism
of the different lines is determined in a subsequent clustering and rating process
that considers the orientation and offset values of the line in the 3D space. The
clustering searches for the best lines, selects all lines within a given Euclidean
distance, and ends with several bundles of parallel lines. A subsequent filter
reduces lines within a bundle that offer a similar r to a single line (cf. Fig. 2). If
the group consists of more than one line, the row distance can be determined.
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Fig. 2. Extracted lines (left), group of parallel lines (middle), final parallel lines (right).

2.3 Particle Filter Based Crop Line Detection and Tracking

In a nutshell particle filters sample a k-dimensional parameter space with M
hypotheses and estimate the probability of parameter configurations for a model
that is verified against a given dataset [9]. The functionality can be summarized
in three steps: The prediction step that generates a new set under the consider-
ation of the input u(t), the determination of the importance weight wm(t), and
finally the re-sampling procedure.

For the crop line detection a geometric model of a parallel line pattern is
selected that can be parametrized with the three parameters [r, θ, d]. r and θ
represent the offset and the angle of a line’s normal equation within the repet-
itive line pattern and d the distance between the lines. The likelihood of a line
pattern to represent the best parametrization wm(t) is directly estimated after
a projection of a hypothesis from the state space to the NIRD image (cf. Fig. 3),
with the plant (cp) and soil pixel count (cs) along the lines of the patterns.

Since it is not trivial to find a consistent probabilistic description wm(t)
that determines the probability of all three parameters at once and with the
assumption that the parametrization can be separated into two independent
problems, the parametrization of r and θ and the parametrization of d can
be realized with two different, cascaded particle filters. The first particle filter
estimates r and θ, while the cascaded filter estimates d based on the results of
the first particle filter.

Based on an evaluation of different importance weight functions, (1) is se-
lected for the determination of θ and r. (2) is selected for the determination of
the third parameter d.

wm,1(t) =
cp

cp + cs
(1)

wm,2(t) = cp (2)

Hence, the constraint dm > εmax has to be added to the second state space,
where dm represents the minimal value of d and εmax a constant > 0. If the
lower boundary is not considered, the row distance degenerates to zero.

After the determination of the likelihood for each hypothesis, a low variance
sampling redraws a set of particles (cf. [9]). The influence of the robot’s move-
ment (u(t)) on the hypotheses in the parameter space has to be considered for
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the prediction step and is modeled with,[
rbl,i(t)
θbl,i(t)

]
=

[
−xbl(t) cos (θw ,i) − ybl(t) sin (θw ,i) + rw ,i sin (θw ,i)

θw ,i − αz,bl(t)

]
, (3)

where [xbl(t), ybl(t), αbl(t)] describe the robot’s pose and [rw,i, θw,i] a static line
in the world coordinate system. [rbl,i, θbl,i] represent the polar coordinates of a
line in the robot coordinate system. With the time derivative of (3), the velocity
vectors which correspond to the different hypotheses for a movement of the robot
along its x-direction can be determined (cf. Fig. 3).

yb

xb

zb
robot

x

y rp
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Fig. 3. Projection of a hypothesis into the camera image (left) and movement of the
hypotheses depicted with a vectorfield, if the robot moves along its x-axes (right).
rh: line equation vector of a horizontal line, rp: line equation vector of a parallel line,
vr: velocity of the robot, vectorfield: velocity vectors of the hypotheses (points) in the
state space for the given vr.

Since the robot will move most of the time parallel to the detected rows and
the parallel line expressions stay static within the state space (cf. Fig. 3), it is
assumed that the prediction can be modeled with Gaussian noise.

3 Experiments and Results

First, a pure NIR segmentation is compared with the final NIRD segmentation
to highlight the improvements that can be achieved if the height information is
added to the segmentation step. Second, the applicability of the two approached
crop detection algorithms and their performances for different plant and row
structures are evaluated. All experiments were performed with seven real in-field
datasets which offer different row organizations, plant structures, plant sizes, and
row irregularities.

The datasets were recorded with a camera carrying vehicle (CCV) that moved
parallel to the rows. For the 3D data gathering the stereo vision system Bum-
blebee2 was used. The NIR images were captured with an industrial camera
(DBK 31AF03) equipped with an additional optical 850nm bandpass filter. The
algorithms were tested on a LENOVO W530 notebook equipped with an Intel
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Core i7-3630QM CPU @ 2.40GHz × 8, 7.4 GiB RAM and a NVIDIA Quadro
K1000M graphic card. Each experiment consists of ten repeated runs for each
dataset and the accumulated results are shown in Fig. 5 and Fig. 6.

3.1 NIR vs. NIRD Segmentation

Figure 4 gives a comparison between a NIR and a NIRD segmentation. In op-
posite to the NIR segmentation, the NIRD approach filters out plants that are
close to the estimated ground plane such as dead plants or smaller weeds that
would influence the crop row detection and result in an overall better row seg-
mentation. The NIRD segmentation requires for the given setup 15ms, excluding
the 3D data preparation which consists of the point cloud generation and a sub-
sequent estimation of the ground plane.

(a) (b) (c)

Fig. 4. Comparison of a pure NIR segmentation and a NIRD segmentation for radish
(a), onions (b), and carrots (c). The first row shows an RGB image of the field structure,
the middle row contains the results from the NIR segmentation, and the lower row
displays the corresponding NIRD segmentation.
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3.2 Evaluation of the RANSAC Algorithm

As expected the thinning based data downsampling keeps, compared to a 0th

and 1st spatial moments based approach, more pixels, retains the orientation of
closed areas, and offers nevertheless a significant reduction of the initial dataset.

The RANSAC crop line identification offers high parameter detection rates
for all three parameters up to 94% for densely seeded plants which appear along a
row as elongated areas (cf. Fig. 5). Since the row space parameter is a constant,
the row space estimations are accumulated and depicted within a histogram
including the best fitting normal distribution. If the row spaces are tighter and
the plants are clearly separated from each other, diagonal line bundles offer a
similar high inlier rating as vertical lines and the detection ratio decreases to
63%. Very unstructured rows result in a detection ratio of 75%. The RANSAC
algorithm requires for an estimation in average 83ms.
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Fig. 5. RANSAC results for elongated rows, row space (right): µ = 0.735.

3.3 Evaluation of the Particle Filter

All in all, the experiments result in high detection ratios up to 98% for r and θ,
and demonstrate that the detection is able to adapt within seconds to changing
row structures. Figure 6 shows that the filter automatically adapts the row space
parameter to the double row distance if whole crop lines are missing, but keeps
the correct estimation if the crop lines offer scattered gaps. The precise offset
plot additionally shows the manual correction of the CCV’s orientation during
the data capturing. Table 1 shows a comparison of the results for different plant
types and row structures. The particle filter algorithms requires in average 145ms
for one iteration.

4 Discussion

Two probabilistic methods using geometric models for a crop row determination
were tested with different in-field datasets and show good results for the determi-
nation of the orientation and offset of parallel lines for elongated row structures.
The RANSAC algorithm results in lower detection ratios for the estimation of
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Fig. 6. Particle filter results for separated plants, blue curve: first run, other colors:
repeated runs, reorientation after a drift of the CCV at t=15s, missing row from t=16s
to t=25s.

plant type row structure RANSAC particle filter

carrot elongated 94.40% 97.71%

onion separated 75.47% 80.53%

radish separated 62.94% 95.62%

Table 1. Crop line detection results, RANSAC vs. particle filter.

the correct parameters for separated plants while the introduced cascaded par-
ticle filter delivers also sufficiently precise results for such row structures and
εmax = 0.15...0.25. Both algorithms result in noise afflicted parameter values
for the row distance. Since the row space is the only parameter that is constant
during the robot’s motion, the results can be improved with additional filters.
Depending on the variance of the prediction step and the activation status of
the particle deprivation avoidance of the second particle filter, the results can
be optimized either for a crop line structure identification, or a crop line track-
ing and in-line navigation. Additional the evaluated computational times for the
segmentation and the crop line detection indicate a real-time capability of the
algorithms. Further the real movement of the robot will be considered in future
works for the crop row estimation, to get more stable results for the orientation
and offset with a Kalman-filter based fusion of the crop line determination and
the (visual) odometry data.
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