
GPS-free Localisation and Navigation of an Unmanned
Ground Vehicle for Yield Forecasting in a Vineyard

Sam Marden, Mark Whitty

UNSW Australia
School of Mechanical and Manufacturing Engineering

Abstract. Yield forecasting is an important practice for vineyards to ensure that seasonal
yield targets are met. Currently this is performed by manually collecting samples from around
the vineyard that are measured and weighed. There has been increased research into automat-
ing this process, particularly through computer vision techniques.

This paper presents a localisation and navigation system for an autonomous ground vehicle
that is capable of traversing a vineyard and acquiring geo-referenced images for use in yield
forecasting, without relying on high- precision GPS. Localisation and navigation is achieved
using laser scanners to detect the rows in the vineyard, which are used as features in line-based
SLAM.

Successful autonomous navigation of a block, including travelling along the length of the rows
and transitioning between rows, in combination with geo-referencing images acquired during
this time, has been demonstrated using this approach.

1 Introduction

Major growers and purchasers of grapes are stipulating that particular yield targets should be
met, in the belief that this will improve and maintain wine quality. Consequently, there is a strong
demand for improved systems to forecast yield.

The current industry standard for yield forecasting is to manually sample and weigh bunches
taken from various sections of the vineyard, and use this information to infer the yield of the entire
vineyard [6]. Due to the inefficiency and inaccuracy of these approaches[4], there has been increased
research into methods of automating this yield estimation.

Much of this work has focused on using computer vision techniques [12][14], and these approaches
have demonstrated significant improvements over the current industry practices in terms of their
ability to forecast the yield of a vineyard. However, there still exists the problem of how to efficiently
acquire the images necessary for this processing, since manually collecting photos of grapes from
across an entire vineyard is not feasible. Research has shown [21] that while vineyard managers
strive for a forecasting accuracy of 5%, many have to tolerate errors as large as 10% in order to
cover multiple vineyard blocks while keeping costs within a prescribed budget.

Autonomous systems capable of navigating a vineyard or orchard have been demonstrated using
high-precision RTK-GPS [17][18] that are capable of operating safely in agricultural environments.
The lack of GPS availability due to environmental conditions such as large canopies, the need for
prior surveying of the area, and unreliable connectivity in certain scenarios (see Figure 5) make
GPS-free approaches desirable.

Laser scanners have been used in agricultural robotics in order to create 3D maps of plants, using
GPS for localisation [13][20][22]. Localisation using only lasers has been performed using artificial
reflective markers [1][11] to aid in navigation, as well as in combination with GPS [9].

Recently, localisation of a robot in a maize field has been performed using only 2D LiDAR [10],
however in this case there were specific requirements on the height and overhang of leaves that



Fig. 1: Robot autonomously travelling between the rows of the vineyard.

are observed. Additionally, the localisation was not performed simultaneously with autonomous
navigation and row following.

Row-following has been performed by autonomous agricultural robots by using 2D LiDAR to
detect the rows in an orchard setting [8][19][2], however in these instances global localisation has
not been performed.

Table 1 below compares these existing approaches to agricultural localisation and navigation.

Reference Localisation Mapping Navigation

[17][18] GPS No Yes
[13][20][22] GPS Yes No

[1][11] LiDAR with reflective landmarks Yes No
[9] LiDAR with line features Yes No

[8][19][2] Dead reckoning No Yes
[16] GPS Yes Yes

Table 1: Comparison of existing approaches to localisation and navigation in a vineyard.

The clear limitation of existing approaches is that they do not provide simultaneous localisation,
mapping, and navigation without relying on GPS, which are necessary for the task performed in
this paper. In certain applications, such as slashing and spraying of crops, it is not necessary for the
autonomous vehicles to be able to build a map of their environment and localise themselves within
it, and in others this problem has been solved through the use of high-precision GPS.

In the context of creating a map of geo-referenced images taken by the autonomous vehicle, it
is necessary that the robot is capable of creating an accurate map of the vineyard, in addition to
being able to localise itself within this map. In terms of navigation, the robot must be able to stay
close to the centre of the row. From this position, it is able to take pictures of both sides of the row
that it is currently in, and it will also avoid colliding with the rows themselves. It is also desirable
that this approach does not rely on high-accuracy GPS [2]. In order to be able to determine exactly
which vine the robot is capturing images of at a given time, the localisation should be accurate to
within 1 metre of ground truth parallel to the rows of the vineyard, and 2.5 metres perpendicular
to the rows.

This paper presents a system implemented on an autonomous ground vehicle that acquires
images referenced to their location within the vineyard, which is necessary in order to accurately
determine the distribution of yield. This is performed without relying on GPS.



The remainder of the paper is structured as follows: Section 2 provides a brief overview of the
system itself, Section 3 presents the method of localisation using line-based Simultaneous Locali-
sation and Mapping (SLAM), Section 4 presents the approach to navigation used, and Section 5
presents the results of the performance of the system in simulation and in a vineyard.

2 System Overview

The system presented in this work autonomously traverses the vineyard acquiring images as it trav-
els. In order to achieve this, the robot performs two primary tasks; localisation and mapping, which
will provide accurate references for the locations at which the images are taken, and navigation,
will allow the robot to safely traverse the vineyard and ensure that photos are captured from the
correct positions. A brief overview of the approaches to these two tasks is discussed below, with the
following sections going into further detail regarding how these are achieved.

– Localisation and mapping: localisation and mapping are performed using lines that are extracted
from a 2D LiDAR mounted at the front of the vehicle.

– Navigation: navigation is achieved by using the currently estimated rows of the vineyard in
order to ensure the safe and precise control of the robot. At any given time, the robot aims
to navigate along the centre of the row that it is currently in. Additionally, the robot uses the
end points of the extracted rows to navigate around the ends of the rows in order to transition
between them.

3 Localisation and Mapping

3.1 Line-Based SLAM

Localisation and mapping is performed in this work using the rows of the vineyard as features in an
EKF-SLAM framework. The use of lines as features in an EKF-SLAM framework has been shown
previously to provide highly accurate localisation in structured environments, even in the presence
of poor quality sensors [3].

In the case of the robot travelling through the vineyard, we have to consider the pose of the
robot in three, rather than two, dimensions, due to the fact that the terrain in the vineyard varies
considerably in height and slope. The rows of the vineyard, which are used as features in line-based
SLAM, are assumed to be perfectly straight. This results in the following parametrisation of the
robot’s state:  x y z︸ ︷︷ ︸

robot translation

qw qx qy qz︸ ︷︷ ︸
robot rotation

ρ1 θi ... ρN θN︸ ︷︷ ︸
line features


The process model is implemented using the linear velocity estimated from the motor encoders

and the angular velocities estimated from the gyroscope, while observations are performed using
the lines that are extracted from the laser scans, with the observed lines being parametrised in
polar coordinates.

The measured lines are those that are extracted from the current accumulation of laser scans,
using the method discussed below. The expected measurements of the line features are the lines
currently in the state vector parametrised in the robot-local frame. This conversion from global to
local coordinates is performed as follows:(

ρlocal
θlocal

)
=

(
ρglobal − xrobot cos θglobal − yrobot sin θglobal

θglobal

)



3.2 Line Extraction

RANSAC [7] is used to extract lines from the laser scans obtained from the 2D LiDAR. Once the
lines are extracted, they are parametrised in polar coordinates r, θ, and are assumed to be infinitely
long.

Laser scans are accumulated into 3D point clouds over a period of several seconds due to
the fact that single scans are individually of very poor quality, which is caused by a number of
factors, including uneven terrain, overhanging branches, and long grass. Note that when the lines
are extracted, the point clouds are projected to 2D. This 2D projection of the accumulated laser
scans is shown in Figure 2 below.

Fig. 2: A top-down view of the robot located within the rows of the vineyard, in addition to the accumu-
lated laser scans, illustrating the challenging operating conditions brought about by the unstructured
environment.

Note the readings from the laser that are greater than a certain distance away from the robot
are ignored in order to prevent issues where the ground is observed.

3.3 Data Association and Feature Management

In a similar approach to that of [3], lines that are extracted from the accumulated laser scans are
associated to existing lines according to the following metric:

dline =
√
wρ∆ρ2 + wθ∆θ2

Here ∆ρ and ∆θ are the differences, in local coordinates, between the observed and expected
radii and angles of the lines respectively, while wρ and wθ are the weights for the radii and angles.
Provided that this metric is below a certain threshold, the two lines are considered to have been
matched, whilst lines that are extracted erroneously are rejected.



The feature management policy detailed in Table 2 below outlines the approach used in this
work to manage existing features and handle observations of new features.

Event Action

New line observed Add line to candidate list, set score to Snew

Candidate line observed Increment candidate score
Candidate line not observed Decrement candidate score
Candidate score above Smax Add line to EKF state
Candidate score below Smin Remove line from candidate list

Table 2: Feature management policy.

Here Snew, Smax and Smin are adjustable thresholds used to control how quickly lines are removed
from the candidate list. This approach, although being relatively simplistic, is sufficiently robust
that it is able to account for erroneous detections of lines. It is critical that these lines are estimated
and managed accurately and reliably, as they are used to guide the robot in its navigation. Note
the erroneous observations do not occur so frequently that memory becomes a concern.

4 Navigation

4.1 Row Following

Two existing approaches have been combined to produce the approach to navigation presented in
this work. The centre lines of the currently extracted row are used as a target lines for the vehicle
to follow [8], with the control law being adapted from an Ackermann-steered tractor [5] in order to
accommodate the differentially-driven vehicle here.

Navigation is achieved using the control law discussed below to follow the centre line of the
currently estimated rows of the vineyard. We assume that the robot is driving at a constant linear
velocity, and as such the control input is parametrised in terms of the angular velocity of the robot,
the control law for which is given by:

ω = v cos3 (θ) (−Kd tan (θ) −Kpx)

Here ω and v are the linear and angular velocities of the robot respectively, with v assumed
to be constant. Kp and Kd are the control constants. The linear (x) and angular (θ) errors are
calculated based on the current estimate of the robot’s pose and the lines of the vineyard rows.

4.2 Row Transition

In order to cover the area of an entire block in the vineyard, the robot must be able to not only
travel along the lengths of the rows, but also transition between rows. This task of exiting a row
and reliably entering the next one has recently been identified as the most challenging aspect of
navigating in a vineyard-like environment [8].

In this work, the robot continuously attempts to navigate around the end of the currently
observed rows, as estimated in the EKF’s state. However, since the robot is going to be continuously
observing the rows, it will not actually transition into the next row until it is has reached the end
of the current row, as illustrated in Figure 3 on the following page.



(a) (b)

Fig. 3: The proposed approach to row transitioning utilises the current estimates of the endpoints of the
rows of the vineyard to provide reliable and safe navigation behaviour. While the robot is inside the
rows of the vineyard (A), it continuously attempts to drive around the currently observed endpoints
of the row. Since it will continue to see more of this row, it will not actually transition to the next
row until it reaches the end of the current one (B).

5 Experiments and Results

The system has been tested extensively in a variety of simulated environments, in addition to an
actual vineyard.

The platform used for testing the real-world performance of the navigation is shown in Figure
1, and has been equipped with several sensors, including:

– SICK LMS 111: LiDAR acquiring laser scans at a frequency of 50Hz. The laser has been mounted
high on the robot, approximately one metre off the ground.

– Microstrain IMU: includes an accelerometer, gyroscope, and magnetometer.
– Encoders: both of the motors driving two motors on either side of the Husky are equipped

encoders.
– GPS: a high-precision Trimble GPS has been mounted on the Husky in order to provide a

ground truth reference.
– Cameras: the robot has been equipped with a Nokia D80 DSLR.

The software has been implemented using ROS as the framework for inter-process communica-
tion [15], and is capable of operating in real-time.

The system has been tested in the Jarrett’s of Orange vineyard, and has successfully demon-
strated the ability to travelling the length of a block in the vineyard and transition between rows,
as well as being able to start navigating from any point in the block, whether inside or outside the
rows. Figure 1 illustrates the robot autonomously travelling along the length of the block.



5.1 Localisation and Mapping

The system has been tested extensively in simulation under a variety of conditions including varying
noise in odometry, laser scans, and quality of the observable rows. The following table presents an
evaluation of the performance of the algorithm with changes in these conditions. Figure 4 below
illustrates the performance of the system in a simulated vineyard.
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Fig. 4: Comparison between the line-based SLAM and ground truth paths and rows in simulation.

The RMS errors of the estimated path compared with the ground truth reference and the
estimated map compared with the known map (quantified as the distance between the endpoints
of the rows) are shown in Table 3 below.

Noise in observations of vineyard rows Low Medium High

Localisation parallel to row RMSE (metres) 0.04 0.04 0.04

Localisation perpendicular to row RMSE (metres) 0.20 0.49 0.44

Mapping RMSE (metres) 0.39 0.70 0.79

Table 3: Analysis of the performance of localisation and mapping in different operating conditions.

In this testing, it was found that the most significant factor in determining the performance
of the localisation and mapping was the quality of the rows of the vineyard. As aforementioned,
the required level of accuracy for the localisation of the robot is 2.5 metres parallel to the rows,
and 1 metre perpendicular to the rows. These results clearly demonstrate the achievement of the
target levels of accuracy for localisation and mapping using the approach presented in this paper.
Nevertheless, we note that the localisation accuracy slowly drifts over time, and further work is
being conducted into the use of loop closure to solve this issue.



The system has also been tested extensively in an actual vineyard in order to further demonstrate
the robustness of the vehicle’s performance and to verify that the system performs as robustly in
the real-world as it does in simulation. Figure 5 below illustrates the path taken by the robot as it
autonomously navigates the length of a block and transitions to the next row, as compared with
the high-precision RTK-GPS. In addition to this, we also present a comparison between the lines
extracted and filtered by the robot and lines extracted from aerial LiDAR acquired at the vineyard.
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Fig. 5: Comparison between the line-based SLAM and GPS paths in a vineyard. This clearly illustrates the
shortcomings of the use of GPS in such an application, as we can clearly see that the the quality
of GPS readings deteriorates for a substantial period of time, which is most likely due to loss of
contact with the base station.

The estimation of the rows of the vineyard is shown here to be accurate in terms of both the
length and the spacing of the vines, and we can also observe that the localisation is more accurate
when the line-based SLAM is used. It is clear that even the high-precision GPS is inaccurate enough
that the use of GPS alone would not be sufficient.

5.2 Navigation

The RMS errors of the linear and angular offsets of the robot from the centre of the row as it
traversed the length of the block were 0.03 metres and 1.35 degrees respectively. These low errors
clearly demonstrate the high performance of the system is accurately navigating along the centre
lines of the rows of the vineyard.

The use of global localisation and mapping in facilitating navigation is a key component of the
system. These results demonstrate that even in situations where, in general, individual observations
are poor, the combination of the information that is fused over time in the EKF allows the robot to
accurately navigate along the lengths of the rows of the vineyard, and to safely transition between
them.



6 Conclusion and Future Work

This paper has presented autonomous localisation and navigation in a vineyard for the purpose of
geo-referencing images, which uses lines extracted from 2D LiDAR to avoid relying on GPS. The
system has been demonstrated to be able to autonomously traverse and transition between the
rows of a vineyard with a sufficient level of accuracy that it is possible to determine which vine the
vehicle is currently taking pictures of.

The images acquired during this process will be used for automated yield forecasting. The
ability to efficiently and autonomously obtain these images will provide vineyard operators with
significantly more information regarding the distribution of yield within their vineyards, thereby
allowing them to make more informed decisions regarding the management and maintenance of
their vineyards.
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